How Writing Shapes Our Brain and Culture

The process of our mental and social adaptation to new intellectual technologies is reflected in, and reinforced by, the changing metaphors we use to portray and explain the workings of nature.

Once maps had become common, people began to picture all sorts of natural and social relationships as cartographic, as a set of fixed, bounded arrangements in real or figurative space. We began to “map” our lives, our social spheres, even our ideas. Under the sway of the mechanical clock, people began thinking of their brains and their bodies—of the entire universe, in fact-as operating “like clock-work.” In the clock’s tightly interconnected gears, turning in accord with the laws of physics and forming a long and traceable chain of cause and effect, we found a mechanistic metaphor that seemed to explain the workings of all things, as well as the relations between them.

Language itself is not a technology. It’s native to our species. Our brains and bodies have evolved to speak and to hear words. A child learns to talk without instruction, as a fledgling bird learns to fly.

Because reading and writing have become so central to our identity and culture, it’s easy to assume that they, too, are innate talents.

But they’re not. Reading and writing are unnatural acts, made possible by the purposeful development of the alphabet and many other technologies. Our minds have to be taught how to translate the symbolic characters we see into the language we understand. Reading and writing require schooling and practice, the deliberate shaping of the brain.

 Readers of English, for instance, have been found to draw more heavily on areas of the brain associated with deciphering visual shapes than do readers of Italian. The difference stems, it’s believed, from the fact that English words often look very different from the way they sound, whereas in Italian words tend to be spelled exactly as they’re spoken.

The earliest examples of reading and writing date back many thousands of years. As long ago as 8000 BC, people were using small clay tokens engraved with simple symbols to keep track of quantities of livestock and other goods. Interpreting even such rudimentary markings required the development of extensive new neural pathways in people’s brains, connecting the visual cortex with nearby sense-making areas of the brain. Modern studies show that the neural activity along these pathways doubles or triples when we look at meaningful symbols as opposed to meaningless doodles. As Wolf describes, “Our ancestors could read tokens because their brains were able to connect their basic visual regions to adjacent regions dedicated to more sophisticated visual and conceptual processing. ” Those connections, which people bequeathed to their children when they taught them to use the tokens, formed the basic wiring for reading.

The technology of writing took an important step forward around the end of the fourth millennium BC. It was then that the Sumeri-ans, living between the Tigris and Euphrates rivers in what is now Iraq, began writing with a system of wedge-shaped symbols, called cuneiform, while a few hundred miles to the west the Egyptians developed increasingly abstract hieroglyphs to represent objects and ideas. Because the cuneiform and hieroglyphic systems incorporated many logosyllabic characters, denoting not just things but also speech sounds, they placed far greater demands on the brain than did the simple accounting tokens. Before readers could interpret the meaning of a character, they had to analyze the character to figure out how it was being used.

The Sumerians and the Egyptians had to develop neural circuits that, according to Wolf, literally “crisscrossed” the cortex, linking areas involved not only in seeing and sense-making but in hearing, spatial analysis, and decision mak-ing. a As these logosyllabic systems expanded to include many hundreds of characters, memorizing and interpreting them became so mentally taxing that their use was probably restricted to an intellectual elite blessed with a lot of time and brain power. For writing technology to progress beyond the Sumerian and Egyptian models, for it to become a tool used by the many rather than the few, it had to get a whole lot simpler.

That didn’t happen until fairly recently-around 750 BC-when the Greeks invented the first complete phonetic alphabet. The Greek alphabet had many forerunners, particularly the system of letters developed by the Phoenicians a few centuries earlier, but linguists generally agree that it was the first to include characters representing vowel sounds as well as consonant sounds. The Greeks analyzed all the sounds, or phonemes, used in spoken language, and were able to represent them with just twenty-four characters, making their alphabet a comprehensive and efficient system for writing and reading. The “economy of characters,” writes Wolf, reduced “the time and attention needed for rapid recognition” of the symbols and hence required “fewer perceptual and memory resources.” Recent brain studies reveal that considerably less of the brain is activated in reading words formed from phonetic letters than in interpreting logograms or other pictorial symbols.

In a purely oral culture, thinking is governed by the capacity of human memory. Knowledge is what you recall, and what you recall is limited to what you can hold in your mind. Through the millennia of man’s preliterate history, language evolved to aid the storage of complex information in individual memory and to make it easy to exchange that information with others through speech. “Serious thought,” Ong writes, was by necessity “intertwined with memory systems.” Diction and syntax became highly rhythmical, tuned to the ear, and information was encoded in common turns of phrase— what we’d today call clichés-to aid memorization. Knowledge was embedded in “poetry,” as Plato defined it, and a specialized class of poet-scholars became the human devices, the flesh-and-blood intellectual technologies, for information storage, retrieval, and transmission. Laws, records, transactions, decisions, traditions-everything that today would be “documented”-in oral cultures had to be, as Havelock says, “composed in formulaic verse” and distributed “by being sung or chanted aloud.”

The oral world of our distant ancestors may well have had emotional and intuitive depths that we can no longer appreciate. McLuhan believed that preliterate peoples must have enjoyed a particularly intense “sensuous involvement” with the world. When we learned to read, he argued, we suffered a “considerable detachment feelings or emotional involvement that a nonliterate man or society would experience.”” But intellectually, our ancestors’ oral culture was in many ways a shallower one than our own. The written word liberated knowledge from the bounds of individual memory and freed language from the rhythmical and formulaic structures required to support memorization and recitation. It opened to the mind broad new frontiers of thought and expression.

Source – The Shallows: What the Internet Is Doing to Our Brains by Nicholas Carr

Goodreads – https://www.goodreads.com/book/show/9778945-the-shallows

Read Previous – https://thinkingbeyondscience.in/2024/11/15/the-unseen-ethics-of-technology-how-inventions-shape-minds-and-society/

Read the Next Article in the Series :

Leave a comment

I’m Vaibhav

I am a science communicator and avid reader with a focus on Life Sciences. I write for my science blog covering topics like science, psychology, sociology, spirituality, and human experiences. I also share book recommendations on Life Sciences, aiming to inspire others to explore the world of science through literature. My work connects scientific knowledge with the broader themes of life and society.

Let’s connect