Trees and Insects: An Unseen Communication Network

Four decades ago, scientists noticed something on the African savannah. The giraffes there were feeding on umbrella thorn acacias, and the trees didn’t like this one bit. It took the acacias mere minutes to start pumping toxic substances into their leaves to rid themselves of the large herbivores. The giraffes got the message and moved on to other trees in the vicinity. But did they move on to trees close by? No, for the time being, they walked right by a few trees and resumed their meal only when they had moved about 100 yards away.

The acacia trees that were being eaten gave off a warning gas (specifically, ethylene) that signaled to neighboring trees of the same species that a crisis was at hand. Right away, all the forewarned trees also pumped toxins into their leaves to prepare themselves. The giraffes were wise to this game and therefore moved farther away to a part of the savannah where they could find trees that were oblivious to what was going on. Or else they moved upwind. For the scent messages were carried to nearby trees on the breeze, and if the animals walked upwind, they could find acacias close by that had no idea the giraffes were there.

When it comes to some species of insects, trees can accurately identify which bad guys they are up against. The saliva of each species is different, and the tree can match the saliva to the insect. Indeed, the match can be so precise that the tree can release pheromones that summon specific beneficial predators. The beneficial predators help the tree by eagerly devouring the insects that are bothering them.

Trees can also mount their own defence. Oaks, for example, carry bitter, toxic tannins in their bark and leaves. These either kill chewing insects outright or at least affect the leaves’ taste to such an extent that instead of being deliciously crunchy, they become biliously bitter. Willows produce the defensive compound salicylic acid, which works in much the same way.

Salicylic acid is a precursor of aspirin, and tea made from willow bark can relieve headaches and bring down fevers. Such defense mechanisms, of course, take time. Therefore, a combined approach is crucially important for arboreal early-warning systems.

Suzanne Simard of the University of British Columbia in Vancouver has discovered that they also warn each other using chemical signals sent through the fungal networks around their root tips, which operate no matter what the weather. Surprisingly, news bulletins are sent via the roots not only by means of chemical compounds but also by means of electrical impulses that travel at the speed of a third of an inch per second. In comparison with our bodies, it is, admittedly, extremely slow. However, there are species in the animal kingdom, such as jellyfish and worms, whose nervous systems conduct impulses at a similar speed.

Tree roots extend a long way, more than twice the spread of the crown. So the root systems of neighbouring trees inevitably intersect and grow into one another-though there are always some exceptions. Even in a forest, there are loners, would-be hermits who want little to do with others. Can such antisocial trees block alarm calls simply by not participating? Luckily, they can’t. For usually there are fungi present that act as intermediaries to guarantee quick dissemination of news.

Fungi present around the roots of the trees in the forest operate like fibre-optic Internet cables. Their thin filaments penetrate the ground, weaving through it in almost unbelievable density. One teaspoon of forest soil contains many miles of these “hyphae’$ Over centuries, a single fungus can cover many square miles and network an entire forest. The fungal connections transmit signals from one tree to the next, helping the trees exchange news about insects, drought, and other dangers.

If trees are weakened, it could be that they lose their conversational skills along with their ability to defend themselves. Otherwise, it’s difficult to explain why insect pests specifically seek out trees whose health is already compromised. It’s conceivable that to do this, insects listen to trees’ urgent chemical warnings, and then test trees that don’t pass the message on by taking a bite out of their leaves or bark.

A tree’s silence could be because of a serious illness or, perhaps, the loss of its fungal network, which would leave the tree completely cut off from the latest news. The tree no longer registers approaching disaster, and the doors are open for the caterpillar and beetle buffet.

In the symbiotic community of the forest, not only trees but also shrubs and grasses -and possibly all plant species–exchange information. However, when we step into farm fields, the vegetation becomes very quiet. Thanks to selective breeding, our cultivated plants have, for the most part, lost their ability to communicate above or below ground -you could say they are deaf and dumb- and therefore they are easy prey for insect pests. 12 That is one reason why modern agriculture uses so many pesticides. Perhaps farmers can learn from the forests and breed a little more wildness back into their grain and potatoes so that they’ll be more talkative in the future.

Communication between trees and insects doesn’t have to be all about defense and illness. Blossoms do not release scent at random or to please us. Fruit trees, willows, and chestnuts use their olfactory missives to draw attention to themselves and invite passing bees to sate themselves. Sweet nectar, a sugar-rich liquid, is the reward the insects get in exchange for the incidental dusting they receive while they visit. The form and colour of blossoms are signals, as well. They act somewhat like a billboard that stands out against the general green of the tree canopy and points the way to a snack.

Source : The Hidden Life of Trees: What They Feel, How They Communicate: Discoveries from a Secret World by Peter WohllebenTim Flannery (Foreword)Jane Billinghurst (Translator)

Goodreads : https://www.goodreads.com/book/show/28256439-the-hidden-life-of-trees

Read Previous Article : https://thinkingbeyondscience.in/2024/12/30/how-trees-care-for-each-other-insights-from-nature/

Read Next Article in Series :

Leave a comment

I’m Vaibhav

I am a science communicator and avid reader with a focus on Life Sciences. I write for my science blog covering topics like science, psychology, sociology, spirituality, and human experiences. I also share book recommendations on Life Sciences, aiming to inspire others to explore the world of science through literature. My work connects scientific knowledge with the broader themes of life and society.

Let’s connect